Mining frequent closed itemsets from a landmark window over online data streams

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mining maximal frequent itemsets from data streams

Frequent pattern mining from data streams is an active research topic in data mining. Existing research efforts often rely on a two-phase framework to discover frequent patterns: (1) using internal data structures to store meta-patterns obtained by scanning the stream data; and (2) re-mining the meta-patterns to finalize and output frequent patterns. The defectiveness of such a two-phase framew...

متن کامل

Incremental updates of closed frequent itemsets over continuous data streams

Online mining of closed frequent itemsets over streaming data is one of the most important issues in mining data streams. In this paper, we propose an efficient one-pass algorithm, NewMoment to maintain the set of closed frequent itemsets in data streams with a transaction-sensitive sliding window. An effective bit-sequence representation of items is used in the proposed algorithm to reduce the...

متن کامل

Mining Top-k Frequent Closed Itemsets in Data Streams Using Sliding Window

Frequent itemset mining has become a popular research area in data mining community since the last few years. There are two main technical hitches while finding frequent itemsets. First, to provide an appropriate minimum support value to start and user need to tune this minimum support value by running the algorithm again and again. Secondly, generated frequent itemsets are mostly numerous and ...

متن کامل

A Sliding Window Method for Finding Recently Frequent Itemsets over Online Data Streams

A data stream is a massive unbounded sequence of data elements continuously generated at a rapid rate. Consequently, the knowledge embedded in a data stream is likely to be changed as time goes by. However, most of mining algorithms or frequency approximation algorithms for a data stream do not able to extract the recent change of information in a data stream adaptively. This paper proposes a s...

متن کامل

DELAY-CFIM: A Sliding Window Based Method on Mining Closed Frequent Itemsets over High-Speed Data Streams

Closed frequent itemset mining plays an essential role in data stream mining. It could be used in business decisions, basket analysis, etc. Most methods for mining closed frequent itemsets store the streamlined information in compact data structure when data is generated. Whenever a query is submitted, it outputs all closed frequent itemsets. However, the online processing of existing approache...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2009

ISSN: 0898-1221

DOI: 10.1016/j.camwa.2008.10.060